AI战「疫」:百度开源口罩人脸检测及分类模型
开工上班,各地应该如何做好疫情防护?人工智能技术正在为抗击新冠肺炎疫情的工作提供必要的帮助。
2019 新冠肺炎疫情爆发,让人们的出行发生了很大的变化——自 1 月 24 日武汉宣布封城之后,各省市陆续启动重大突发公共卫生事件一级响应以控制人口流动。很多城市都已规定必须佩戴口罩、测量体温才能搭乘公共交通。2 月 10 号返工日之前,上海、北京等重点城市也陆续放出新规:出入机场、轨道交通、长途汽车站、医疗卫生机构、商场超市等公共场所,未佩戴口罩者将被劝阻。
正确佩戴口罩出门是为了防止疫情扩散,此举得到了人们的广泛支持。但也带来了很多挑战——高密度的人流让基层排查人员面临着人手不足,以及接触疑似患者的风险,只有适应新情况的人工智能技术才能减轻他们的工作压力。
2 月 13 日,百度飞桨宣布开源业界首个口罩人脸检测及分类模型。基于此模型,可以在公共场景检测大量的人脸同时,把佩戴口罩和未佩戴口罩的人脸标注出来,快速识别各类场景中不重视、不注意防护病毒,甚至存在侥幸心理的人,减少公众场合下的安全隐患。同时构建更多的防疫公益应用。
大灾面前,这家科技公司可谓用行动回应了民政部司长陈越良的呼吁:「一个有益的公益软件比捐 10 个亿还管用!」
业内首度开源口罩人脸检测及分类模型口罩人脸检测及分类模型,由两个功能单元组成,可以分别完成口罩人脸的检测和口罩人脸的分类。经过测试,口罩人脸检测部分在准确度上达到了 98%,且口罩人脸分类部分准确率同样达到了 96.5%,性能上也是属于业界领先水平。
同时,它做到了模型的极致轻量化,可在大部分端边云设备上实现实时处理(海思 3559 芯片耗时仅需 17ms)。百度也将持续更新这一模型,不断提升效果。
百度表示,如此高的准确率是大量数据训练的结果,新模型采用了超过十万张图片的训练数据,确保样本量足够且有效。另一方面,人脸检测模型基于百度自研的冠军算法,整个研发过程都是基于百度开源的飞桨深度学习平台,能够进行高效、便捷的模型开发、训练、部署。
我们可以先看看口罩人脸检测及分类模型的效果,其中绿色边界框为戴口罩人脸、红色边界框为不戴口罩人脸。百度团队还提供了在线演示页面,我们可以自己上传图片,并测试模型的效果:
- 02-23人工智能和python之间有什么联系?为何用python?
- 03-022021年值得关注的人工智能趋势
- 03-02人工智能和物联网——5个新兴的应用案例
- 03-02人工智能将使纺织工业的生产过程实现数字化和自动化
- 03-02如何应对人工智能在医疗保健领域的挑战
- 07-21人工智能、物联网和大数据如何拯救蜜蜂
- 01-11全球最受赞誉公司揭晓:苹果连续九年第一
- 12-09罗伯特·莫里斯:让黑客真正变黑
- 12-09谁闯入了中国网络?揭秘美国绝密黑客小组TA
- 12-09警示:iOS6 惊现“闪退”BUG
- 11-18LG新能源宣布与Bear Robotics达成合作,成为
- 11-18机构:三季度全球个人智能音频设备市场强势
- 11-18闲鱼:注册用户过6亿 AI技术已应用于闲置交
- 11-18美柚、宝宝树回应“涉黄短信骚扰”:未发现
- 11-01京东七鲜与前置仓完成融合